Metric dimension and zero forcing number of two families of line graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between the Metric Dimension and Zero Forcing Number of Line Graphs

The metric dimension dim(G) of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices. The zero forcing number Z(G) of a graph G is the minimum cardinality of a set S of black vertices (whereas vertices in V (G)\S are colored white) such that V (G) is converted entirely to black after finitely many applica...

متن کامل

On the zero forcing number of some Cayley graphs

‎Let Γa be a graph whose each vertex is colored either white or black‎. ‎If u is a black vertex of Γ such that exactly one neighbor‎ ‎v of u is white‎, ‎then u changes the color of v to black‎. ‎A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that‎ if initially the vertices in Z are colored black and the remaining vertices are colored white‎, ‎then Z changes the col...

متن کامل

Zero forcing number of graphs

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. In the present paper, we study the forcing number of various classes o...

متن کامل

Anti-forcing number of some specific graphs

Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Bohemica

سال: 2014

ISSN: 0862-7959,2464-7136

DOI: 10.21136/mb.2014.143937